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Abstract—The 1,3-dipolar cycloaddition of unstabilized azomethine ylides with 2- and 3-nitroindoles furnishes the expected hexa-
hydropyrrolo[3,4-b]indole cycloadducts in good to excellent yields. The cycloadducts can be denitrated with Bu3SnH/AIBN, and
cycloadduct 5 was oxidized with MnO2 to yield the known pyrrolo[3,4-b]indole 13.
� 2007 Elsevier Ltd. All rights reserved.
Although there are many examples of the indole p bond
functioning as a dienophile in Diels–Alder reactions,1

there are fewer examples of successful 1,3-dipolar cyclo-
addition reactions of indole.2–9 Apart from the spectacu-
lar carbonyl ylide applications to the synthesis of
Aspidosperma alkaloids by Padwa6,7 and Boger,8 most
examples of 1,3-dipolar cycloaddition reactions with
the indole p bond afford either low-yielding mixtures
or unstable products.2–5

In our ongoing interest in the synthesis and chemistry of
fused indoles,10 we previously reported that 1,3-dipolar
cycloaddition reactions between 2- and 3-nitroindoles
and mesoionic münchnones is an efficient one-step syn-
thesis of pyrrolo[3,4-b]indoles,11 which can be viewed as
stable synthetic analogues of indole-2,3-quinodi-
methane. Although there are several routes to pyrrolo-
[3,4-b]indoles,12 one obvious approach that has appar-
ently not been described is the 1,3-dipolar cycloaddition
between 2- and 3-nitroindoles and azomethine ylides.
Indeed, the 1,3-dipolar cycloaddition of azomethine
ylides with alkenes is a powerful reaction since it results
in the formation of a pyrrolidine ring and has been
widely used for the synthesis of innumerable nitrogen
heterocycles and natural products.13
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We now report our initial results on the 1,3-dipolar
cycloaddition reaction between 2- and 3-nitroindoles
and unstabilized azomethine ylides. We chose the a-
amino acid decarboxylative route that was discovered
independently by Joucla14 and Tsuge,15 and was based
on the inaugural work by Rizzi,16 for the generation
of azomethine ylides derived from amino acids and
formaldehyde (Scheme 1). This extremely simple
method utilizes commercially available compounds and
is performed under almost neutral conditions. For
example, the azomethine ylide derived from sarcosine
and paraformaldehyde reacts with b-nitrostyrenes to
give the corresponding pyrrolidines in good yield.17

Thus, treatment of 3-nitro-1-(phenylsulfonyl)indole
(1)18 with the azomethine ylide generated in situ from
sarcosine and paraformaldehyde in refluxing toluene
affords the desired hexahydropyrroloindole cycloadduct
2 in 61% yield (Scheme 2).19 Although we somewhat
anticipated the loss of nitrous acid from the initial
cycloadduct 2 to furnish 3 as the final product, as we
experienced in similar cases,11 this path is not observed
in any of our reactions, and the initially formed nitro
cycloadducts 2 are quite stable. No reaction occurs
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between the azomethine ylide from sarcosine and para-
formaldehyde and 1-(phenylsulfonyl)indole,20 3-cyano-
1-(phenylsulfonyl)indole,21 and 1-benzyl-3-nitroindole18

under the conditions that give 2. Consistent with our
earlier münchnone cycloadditions,11 the presence of an
electron-withdrawing protecting group on the indole
nitrogen increases the dipolarophilic reactivity of the
nitroindole toward the azomethine ylide. The reaction
of sarcosine/paraformaldehyde with tert-butyl 3-nitro-
indole-1-carboxylate18 results in deprotection of the
Boc group under the reaction conditions and no
cycloadduct is isolated.

The crystal structure of 2 (Fig. 1) confirms the expected
cis-addition of the azomethine ylide to 3-nitroindole 2.22

Similarly, upon reaction with 3-nitro-1-(phenylsulfon-
yl)indole (1) the azomethine ylide generated in situ
from N-benzylglycine and paraformaldehyde in reflux-
ing toluene gives cycloadduct 5 in almost quantitative
yield (Scheme 3).23 Likewise, 1-carbethoxy-3-nitroindole
(4)18 furnishes 6 and 7 with the appropriate azomethine
ylide under the same conditions.24 In contrast, the reac-
tion of 1 with glycine and paraformaldehyde in refluxing
xylene or toluene does not furnish a cycloadduct. This
lack of reactivity of glycine in these azomethine cyclo-
additions has precedence and may simply be due to
the presence of a second acidic hydrogen on glycine that
prevents generation of the azomethine ylide.25 In gen-
eral, we find that toluene is a better solvent than xylene
for these cycloaddition reactions.

To investigate this 1,3-dipolar cycloaddition reaction
with 2-nitroindoles, we treated 1-(phenylsulfonyl)-2-
nitroindole (8)26 with the azomethine ylides from both
Figure 1.
sarcosine and N-benzylglycine, and paraformaldehyde.
To our satisfaction, the desired cycloadducts 9 and 10
were isolated in 86% and 67% yield, respectively
(Scheme 4).27 However, no cycloadduct is obtained in
the reaction of 1,2-bis(phenylsulfonyl)indole28 with
these azomethines, again signifying the importance of
the nitro group in these cycloaddition reactions, and
perhaps also indicative of a steric effect with 1,2-
bis(phenylsulfonyl)indole.

To access the pyrrolo[3,4-b]indole ring system, we
needed to eradicate the nitro group from these cyclo-
adducts. Although initial attempts with acid, base, or
heat were unproductive, we found that treatment of 3
and 5 with Bu3SnH29 gives the denitrated products 11
and 12 in excellent yields (Scheme 5).30 However, thus
far, these conditions do not denitrate 2-nitroindoles.

As further structure confirmation, we treated hexa-
hydropyrrolo[3,4-b]indole 12 with MnO2 to afford pyr-
Scheme 4.
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rolo[3,4-b]indole 13 in modest yield (Scheme 6), which
was identical to a known sample.31 An attempt to
oxidize 12 to 13 using DDQ32 was unsuccessful.

In summary, the 1,3-dipolar cycloaddition of 2- and 3-
nitroindoles with the unstabilized azomethine ylides
generated in situ from the corresponding a-amino acids
and paraformaldehyde in refluxing toluene affords hexa-
hydropyrrolo[3,4-b]indoles in good to excellent yields.
In one case, the cycloadduct could be oxidized to the
corresponding pyrrolo[3,4-b]indole and this method
offers a potential new route to these fused indole
analogues of indole-2,3-quinodimethane. Our study of
other 1,3-dipolar cycloadditions of nitroindoles and
efforts to optimize this new route to pyrrolo[3,4-b]indoles
are continuing and will be reported in due course.
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(dd, J = 9.3, 4.4 Hz); 13C NMR (CDCl3) d 142.2, 137.8,
133.3, 129.2, 129.0, 128.5, 128.4, 127.4, 127.3, 124.9, 124.4,
115.0, 65.8, 62.0, 60.3, 59.3, 44.9; LRMS (EI): m/z 390
(M+), 318, 293, 269, 223, 202, 168, 133 (100%);
HRMS (EI): calcd for C23H22N2O2S: 390.1402, found:
390.1405.

31. Compound 13: mp 154–156 �C (lit.14 156–157 �C); 1H
NMR (acetone-d6) d 8.03 (d, 1H, J = 8.2 Hz), 7.81 (dd,
2H, J = 8.6, 1.2 Hz), 7.54–7.58 (m, 2H), 7.39–7.43 (m,
2H), 7.35–7.38 (m, 2H), 7.28–7.32 (m, 2H), 7.23–7.26 (m,
2H), 7.19 (dt, 1H, J = 7.6, 0.9 Hz), 7.14 (d, 1H,
J = 1.8 Hz), 7.09 (d, 1H, J = 1.8 Hz), 5.34 (s, 2H); 13C
NMR (acetone-d6) d 134.9, 129.9, 129.6, 128.6, 128.0,
127.6, 125.5, 125.0, 121.3, 116.0, 110.9, 105.0, 54.9.

32. Kishbaugh, T. L. S.; Gribble, G. W. Synth. Commun.
2002, 32, 2003–2008.
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